

Urban Forest Potentials in Dense Landscapes

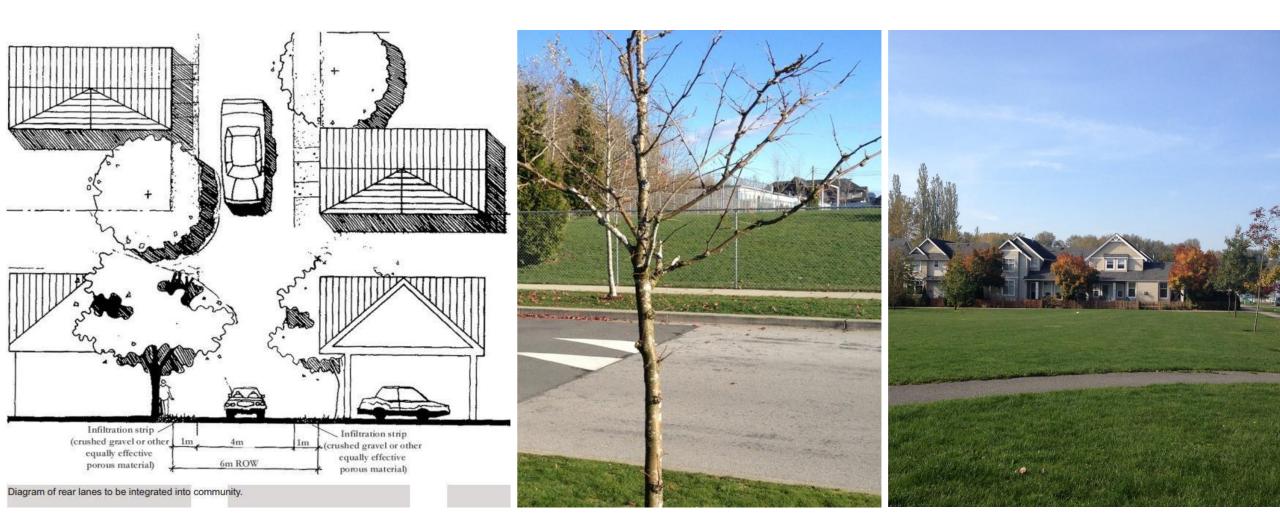
Dr. Sara Barron – Lecturer (teaching specialist) @ SEFS University of Melbourne

Context Inform Design Assess

Priorities Climate Change Health Habitat

. . .

Yard Street Park Neighbourhood City


Densifying Environments

16% Canopy 65% Impervious

~45% Canopy 10% Impervious

Case study: East Clayton, Canada

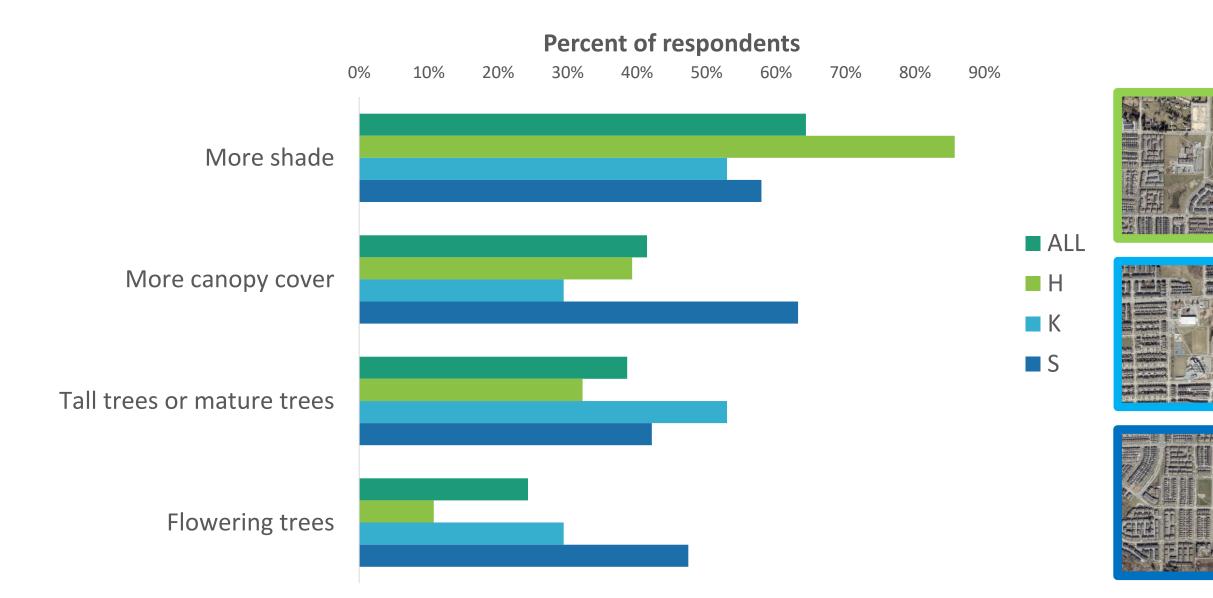
Community parks		Street landscapes	Stormwater ponds	School sites	Utility ROW	Vacant lots	Private yards
14.4 ha	5.0 ha	4.9 ha	4.2 ha	9.9 ha	1.3 ha	14.6 ha	67.8 ha
8.6%	29.9%	2.9%	2.5%	5.9%	0.8%	8.7%	40.6%

Green space types

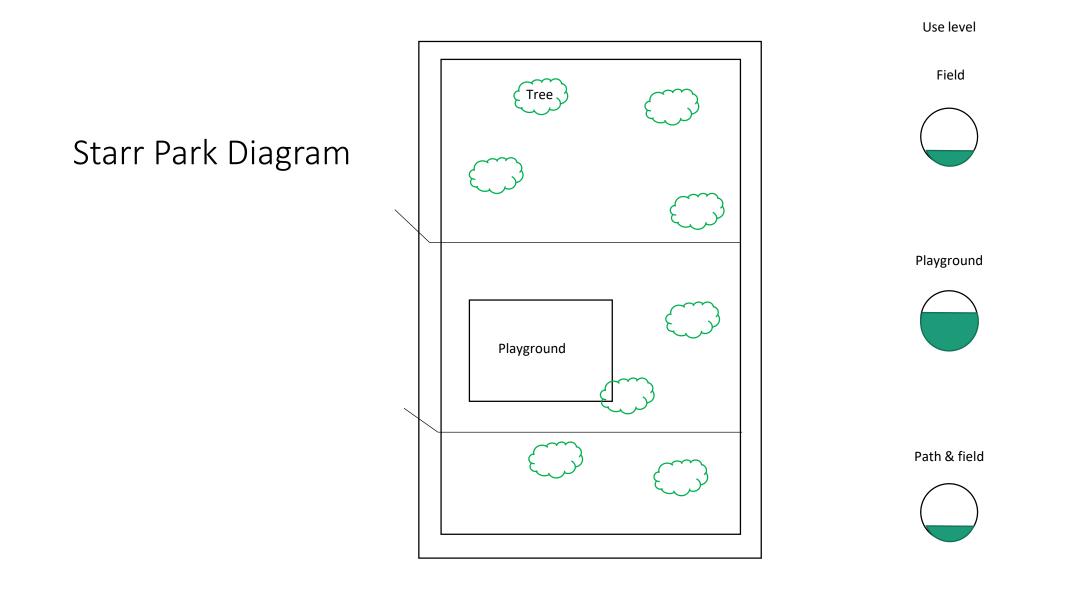
F.	Community	Riparian	Street	Stormwater	School sites	Utility ROW	Vacant lots	Private yards
	parks 14.4 ha	protection 5.0 ha	'andscapes 4.9 ha	ponds 4.2 ha	9.9 ha	1.3 ha	14.6 ha	67.8 ha
	8.6%	29.9%	2.9%	2.5%	5.9%	0.8%	8.7%	40.6%

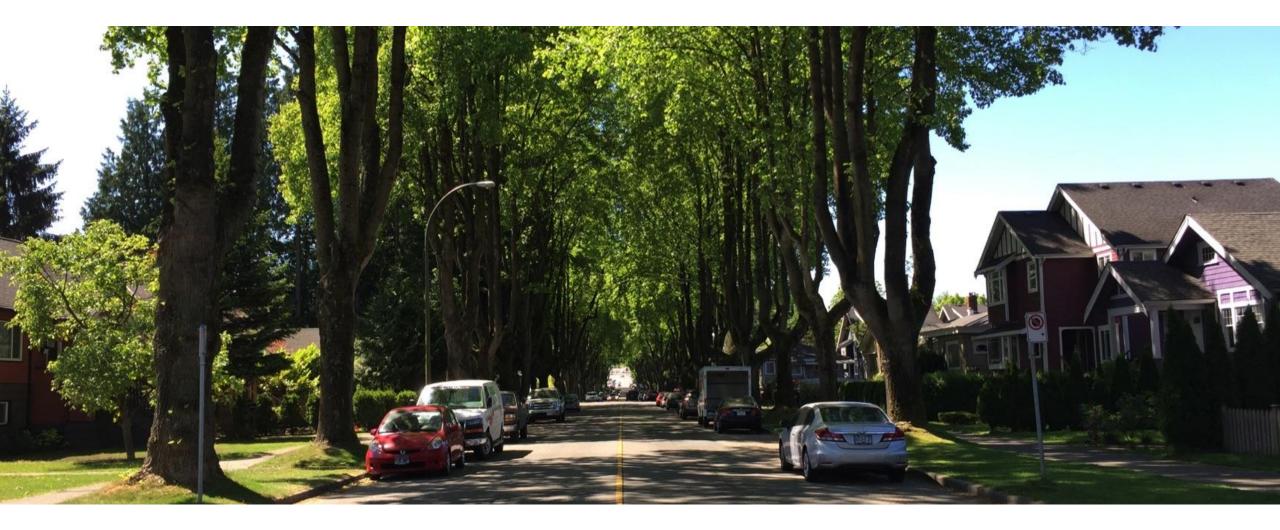
Green space types

Priority indicators


ACADEMICS & PRACTITIONERS:

Urban Tree Diversity Physical Access to Nature Canopy Cover Stormwater Control Habitat Provision Air Quality Improvement Visual Access to Nature Available Growing Space Greenhouse Gas Sequestration and Storage


Local resident priorities


Local priorities	Local preferences
1. Access to natural spaces	provision of privacy, sense of refuge from city life,
	established trees, sensory (smell, sound)
2. Near home greenspace	buffer, feeling of space when looking at distant trees,
	greenspace connectivity
3. Social aspects of greenspace	sense of community, social interaction, knowing
	neighbours
4. Greenspace aesthetics	colours, seasonality, psychological impact, place
	attachment, poetic moments, visual diversity
	natural/messy aesthetic
5. Mature and iconic trees	tree size, local species, canopy coverage
6. General neighbourhood	connectivity, walkability, convenience, affordability
characteristics	

Local resident priorities

Local resident priorities

"you know you have made it, you have arrived" when you live in a community with mature trees. Participant A

Climate Retrofit

Suburban Savannah

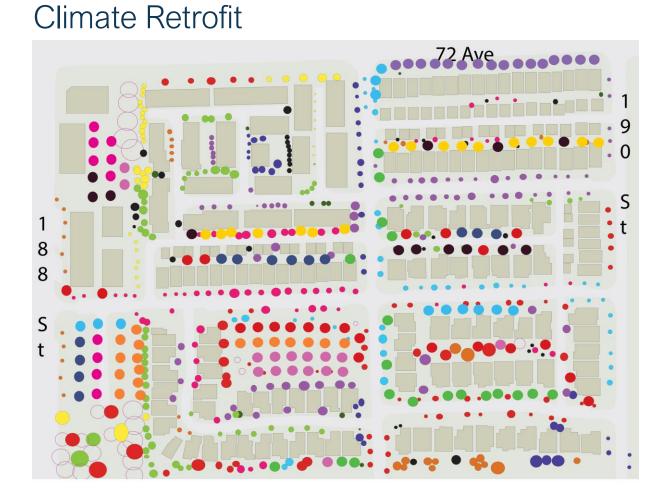
No Policy change

Re-Wild

DESIGN: Preliminary visualization

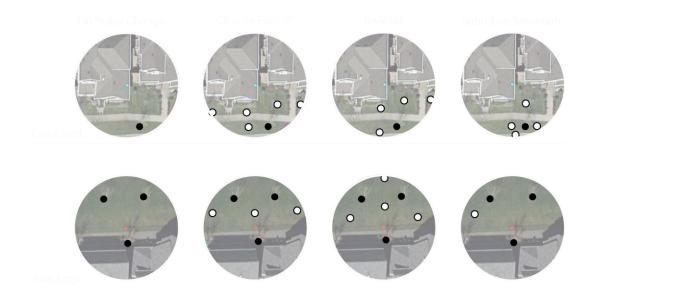
Climate Retrofit

No Policy change

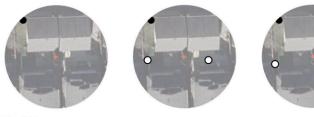

Re-Wild

Existing greenspace

DESIGN: Community scale forest


Suburban Savannah

DESIGN: Sandbox



U.		
199	6	
		34
10/2-1		•
		•

0

Sample % new Total plot trees trees trees added No policy 13,600 59 0 change Climate 305 30,650 74 Retrofit Re-Wild 209 70 27,190 Suburban 164 69 24,520 Savannah

DESIGN: Sample plots

i-Tree

Spatial Analysis & Habitat measurement

Visual Assessment

Trees: 14,890 Canopy Cover: 16% Stormwater: 5,860 m3/year Air Quality: 0.9 t/year GHG sequestration: 60 t/year GHG storage: 4000 t by 2050

	No Policy Change	Climate Retrofit	Re-Wild	Suburban Savannah
Physical Access to				
Nature	78%	78%	87%	94%
# units	4170/5300	4170/5300	4655/5300	5025/5300
Visual Access to				
Nature	28%	28%	43%	89%
# buildings in close visual	574/2048 buildings	574/2048 buildings	878/2048 buildings	1826/2048 buidlings
proximity				
Habitat	15%	15%	26%	21%
Potential Habitat				
(not accounting for quality)	35 ha	35 ha	63 ha	50 ha
Building for Birds – Breeding and Winter Score				
and winter score	78	78	183	79
Breeding For Birds – Forest Fragments as Migrant				
Stopover Sites	93	93	212	174

ASSESS: multiple methods

No policy change

Trees: 14,890 Canopy Cover: 16% **Diversity: High species** Stormwater: 5,860 m3/year Habitat: low Air Quality: 0.9 t/year GHG sequestration: 60 t/year Physical Access: 78% residential units Visual Access: 28% buildings

Climate Retrofit

Trees: 30,650 Canopy Cover: 44% Diversity: High species & size Stormwater: 14,070 m³/year Habitat: medium Air Quality: 2.4 t/year GHG sequestration: 135 t/year Physical Access: 78% residential units Visual Access: 28% buildings

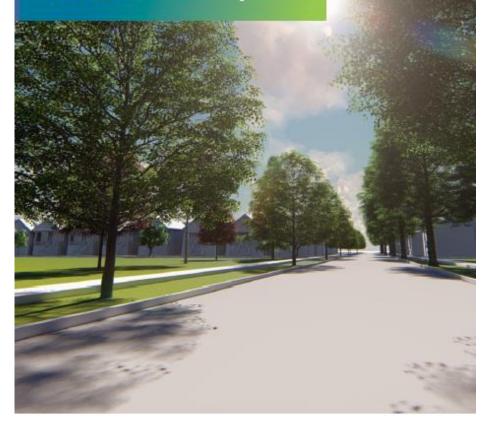
Re-Wild

Trees: 27,190 Canopy Cover: 28% Diversity: High age & structural Stormwater: 9,830 m³ Habitat: high Air Quality: 1.6 t/year GHG sequestration: 107 t/ Physical Access: 87% residential units Visual Access: 43% buildings

Suburban Savannah

Trees: 24,520 Canopy Cover: 29% **Diversity:** High size Stormwater: 10,060 m³/year Habitat: medium Air Quality: 1.7 t/year GHG sequestration: 99 t/year Physical Access: 94% residential units Visual Access: 89% buildings

Visualisations Protocol for Urban Forestry

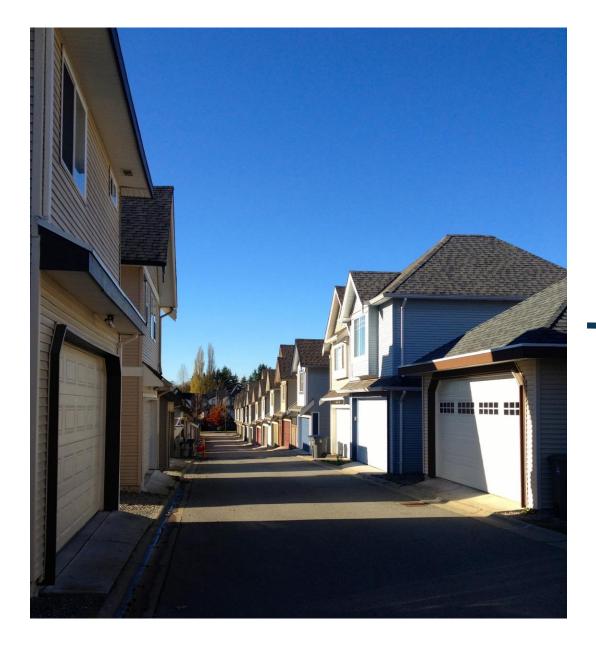


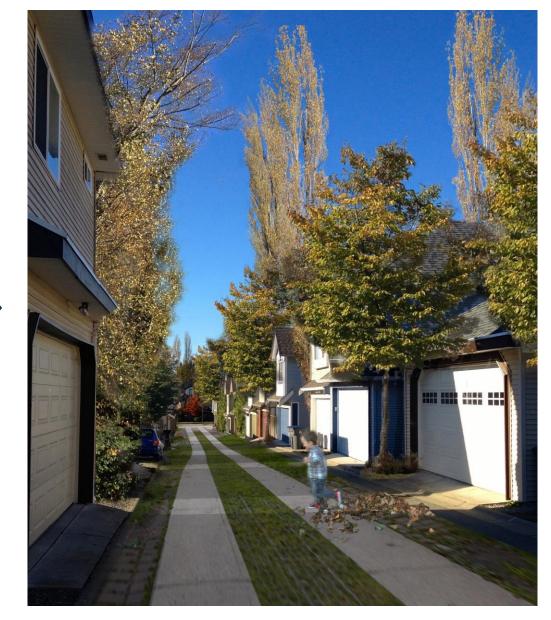
A Visualisation Protocol for Urban Forestry has been developed in association with public realm and planning tree officers/managers and urban forestry researchers. It aims to provide tree officers with an understanding of the planning and production process for using visualisations.

Ana Macias Stephen Sheppard

> https://www.ltoa.org.uk/news/404visualisations-protocol-for-urban-forestry

Visualisation Protocol for Urban Forestry





	No Policy Change	Climate Retrofit	Re-Wild	Suburban Savannah	
Physical Access to Nature	78%	78%	87%	94%	
# units	4170/5300	4170/5300	4655/5300	5025/5300	
Visual Access to Nature	28%	28%	43%	89%	
<pre># buildings in close visual proximity</pre>	574/2048 buildings	574/2048 buildings	878/2048 buildings	1826/2048 buildings	
Habitat Potential (% of total land area)	15%	15%	26%	21%	
Building for Birds Breeding & Winter Score	78	78	183	79	
Canopy Cover 2016	16%	44%	28%	29%	
Air Quality 2016	.89	2.4	1.63	1.65	
2016 Carbon sequestration t/year	60	135	107	99	
Carbon storage 2050 (total tonnes)	4,022	9,659	5,335	5,314	

\longrightarrow

Thank you!

sara.barron@unimelb.edu.au girg.science.unimelb.edu.au/

Nov 10 -13, 2020

